Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.20.21250182

ABSTRACT

ABSTRACT Rationale Macrophage activation syndrome (MAS) and complex immune dysregulation (CID) often underlie acute respiratory distress (ARDS) in COVID-19. Objective To investigate the outcome of personalized immunotherapy in critical COVID-19. Methods In this open-label prospective trial, 102 patients with SOFA (sequential organ failure assessment) score [≥]2 or ARDS by SARS-CoV-2 were screened for MAS (ferritin more than 4420 ng/ml) and CID (ferritin [≤]4420 ng/ml and low expression of HLA-DR on CD14-monocytes). Patients with MAS and CID with increased aminotransferases were assigned to intravenous anakinra; those with CID and normal aminotransferases to tocilizumab. The primary outcome was at least 25% decrease of SOFA score and/or 50% increase of respiratory ratio by day 8; 28-day mortality, change of SOFA score by day 28; serum biomarkers and cytokine production by mononuclear cells were secondary endpoints. Measurements and Main Results The primary study endpoint was met in 58.3% of anakinra-treated patients and in 33.3% of tocilizumab-treated patients (odds ratio 3.11; 95% CIs 1.29-7.73; P: 0.011). No differences were found in mortality and in SOFA score changes. By day 4, ferritin was decreased among anakinra-treated patients; interleukin (IL)-6, soluble urokinase plasminogen activator receptor (suPAR) and the expression of HLA-DR were increased among tocilizumab-treated patients. Anakinra increased capacity of mononuclear cells to produce IL-6. Survivors by day 28 who received anakinra were distributed to scales of the WHO clinical progression of lower severity. Greater incidence of secondary infections was found with tocilizumab treatment. Conclusions Biomarkers may guide favourable anakinra responses in critically ill patients with COVID-19. Trial Registration: ClinicalTrials.gov, NCT04339712 Key-words: anakinra; tocilizumab; acute respiratory distress syndrome; COVID-19; interleukin-6; ferritin; HLA-DR; macrophage activation; monocytes Abstract Word count: 250


Subject(s)
Macrophage Activation Syndrome , Respiratory Distress Syndrome , Critical Illness , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.18.20131326

ABSTRACT

COVID-19 is a pandemic that shares certain clinical characteristics with other acute viral infections. Here, we studied the whole-blood transcriptomic host response to SARS-CoV-2 and compared it with other viral infections to understand similarities and differences in host response. Using RNAseq we profiled peripheral blood from 24 healthy controls and 62 prospectively enrolled patients with community-acquired lower respiratory tract infection by SARS-Cov-2 within the first 24 hours of hospital admission. We also compiled and curated 23 independent studies that profiled 1,855 blood samples from patients with one of six viruses (influenza, RSV, HRV, ebola, Dengue, and SARS-CoV-1). We show gene expression changes in peripheral blood in patients with COVID-19 versus healthy controls are highly correlated with changes in response to other viral infections (r=0.74, p<0.001). However, two genes, ACO1 and ATL3, show significantly opposite changes between conditions. Pathway analysis in patients with COVID-19 or other viral infections versus healthy controls identified similar pathways including neutrophil activation, innate immune response, immune response to viral infection, and cytokine production for over-expressed genes. Conversely, for under-expressed genes, pathways indicated repression of lymphocyte differentiation and T cell activation. When comparing transcriptome profiles of patients with COVID-19 directly with those with other viral infections, we found 114 and 302 genes were over- or under-expressed, respectively, during COVID-19. Pathways analysis did not identify any significant pathways in these genes, suggesting novel responses to further study. Statistical deconvolution using immunoStates found that M1 macrophages, plasmacytoid dendritic cells, CD14+ monocytes, CD4+ T cells, and total B cells showed change consistently in the same direction across all viral infections including COVID-19. Those that increased in COVID-19 but decreased in non-COVID-19 viral infections were CD56bright NK cells, M2 macrophages, and total NK cells. The concordant and discordant responses mapped out here provide a window to explore the pathophysiology of COVID-19 versus other viral infections and show clear differences in signaling pathways and cellularity as part of the host response to SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL